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Relation 
Introduction      

Carbon nano tubes were first synthesized in 1991 by Iijima [1] 
as graphitic carbon needles, ranging from 4 to 30 nm in diameter and 
up to 1 m in length. CNTS have remarkable electrical and mechanical 
properties. Collective electron in carbon nano tubes, so called Plasmon 
modes, can provide important information about their structural and 
electronic properties. Using electron-energy-loss spectroscopy, Pichler 
[2] experimentally studied the electron excitations in single walled 
carbon nano tubes and measured the Plasmon energies. Metallic CNTs 
are considered suitable candidates in the field of Plasmonic as new 
Plasmonic waveguides [3-13].These new Plasmonic waveguides can be 
built by some simple and well-known methods such as CVD [13]. 
          By using the classical electrodynamics and semi classical kinetic theory, 
Slepyan [3], derived the dispersion relation of surface waves in single walled 
carbon nano tubes(SWCTS) and suggested that  CNTS can be used as a 
nano wave guide for controlling electromagnetic wave propagation in specified 
frequency range(i.e. infrared and optical). In particular by solving Maxwell and 
hydrodynamic equations, the propagation of electromagnetic waves in 
SWCNTS is studied [5, 6] and has been shown that dispersion behaviors of 
the plasma waves with TM and TE modes are quite similar. 
 SWCNTS are quasi one dimensional material, which could be 
regarded as rolled-up grapheme layer in cylindrical form. When a grapheme 
layer is rolled up it may become either metallic or semi conducting, depending 
on its geometry. The geometric structure of a SWCNTS is uniquely determined 
by the chiral vector R=ma1+ na2≡(m,n), where m and n are integers, and a1 

and a2 are the elementary vectors of the dimensional grapheme lattice. The 
tube radius of CNT is given by 

                    rc =  𝑎0 2𝜋   √(𝑚2 +𝑚𝑛 + 𝑛2)     

Where 𝑎0 =  3𝑏0  is the lattice constant of graphite sheet and 𝑏0= 

1.42 𝐴0 is the distance between the nearest-neighboring carbon atoms. A 

SWCNTS is metallic if m-n= 3q, where q=0, 1, 2…thus, armchair nanotubes 
are always metallic, where as zig zag nano tubes are metallic if m=3q with 
q=1, 2, 3... 

It is studied  the energy band effects on the dispersion relation of 
surface Plasmon waves in SWCNTS of metallic character, by using the semi 
classical kinetic theory of electron dynamics. In comparison with previous 
investigations [5, 6] that focus on Plasmon wave oscillations in cylindrical 
electron gas as a simple model of metallic tubes, stress on more exact 
analysis of geometrical effects, including the radius and chiral angle of the 
nanotube.  
Aim of Study 

Energy band effect is applicablre in medical sciences and 
technology and information.  

Abstract 
It is studied the energy band effects on the dispersion 

relation of the surface Plasmon waves in single walled carbon nano 
tubes of metallic character, by using the semi classical kinetic theory 
of electro dynamics. The conduction electrons of the system are 
modeled by an infinitesimally thin layer of free-electron gas which is 
described by means of the semi classical kinetic theory of the 
electron dynamics. The effects of the energy band structure is taken 
into account and a more accurate dispersion relation for surface 
Plasmon oscillation in the zigzag and armchair nano tubes of metallic 
character is obtained.  
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Theoritical Study 

 Now it is assumed that both zig-zag (m, o) 
and arm chair (m, n) nano-tubes as infinitesimally thin 
and infinitely long cylindrical shells of radius rc with its 
axis along the z-direction and regard the 

Semiconductors  consist of -electrons super imposed 
with equilibrium densities (per unit area) no. In 

equilibrium the -electron fluid has no velocity and n is 
the perturbed density (per unit area) of fluid, produced 

by the -electron themselves under the action of the 
electric field generated by the fixed positive ions of the 
lattice. Hydrodynamic theory describes electronic 
motion in terms of two dynamical variables, namely 
the electron-density functions. The basic equations in 
this linear Hydro dynamic model are the equations of 
motion, the equations of continuity - 
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Where E11 (x, t) = Ez ez + E e is the tangential 
component of electro magnetic field, e is the element 

charge, meff is the effective mass of the -electron and 
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 differentiates only 

tangentially to the nano tubes surface. In the right 
hand side of equ. (2), the first term arise from the 

internal interaction force in the fluid with  = 2

2

Fv 
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, i.e. 

the square of the speed of propagation of density 
disturbances in a uniform 2D homogenous electron 

fluid. The second term is the force on -electron fluid 
due to the tangential component of the electric field, 
evaluated at the nano tube surface r=rc and the last 
term represents the effects of the scattering of the 
electrons with the positive charge background, where 

 being the friction coefficient.  
        The electric field vector E(x,t) can be expanded 
in the following Fourier forms as :- 
E(x,t)= 
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For the TM modes, the field components can be 
expressed in terms of Ezm,  
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Where K² = q² - W²/c² and c is velocity of light. The 
parameter K is a real quantity in the region 

c
q

W
                                                           (5) 

This means that it is the slow transverse magnetic 
waves. By eliminating the velocity field u (x, t), one 
can obtain the following equation from eqns (1) and 
(2) as : 
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solving eqn. (6) by means of the space-time fourier 
transforms for the induced density n(x,t) on the 
cylindrical surface, we find that : 
n(x,t)= 

]wqm(i[.exp)q(Ndq tzm

r

rm

x

x










 

                                           (7) 

Where, Nm=  - 















E

r

m
qE

m

.e.i

c
z

eff

o

m

 

                                         (8) 

and m = (+i) - (q² +m²/ )r2
c . Now, we use the 

appropriate boundary condition, we have 

 rm c r rcE r  - Erm (rc) Ir<rc = 
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e
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Where o is the permittivity of free space and the 
radial component Erm and the azimuthal component 

Em of the electric field, are given as : 

Erm (r) =  - i 
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On the other hand, the relevant solution of eqn. (5) is : 
E1m (r)  = E01 Km (k rc) Im (k r)  (r < rc) (12) 
andE2m (r)  = E02 Im (k rc) Km (k r)  (r > rc)        (13) 
           Where Im (x) and Km (x) are the modified Bersel 
functions. Substituting eqns. (12) and (13) with 
boundary condition eqn. (9), by using eqn. (8); for q>> 
w/c, one can obtain the dispersion equation as: 
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where p = (e² no/o rc meff)
½

 is the eight frequency of 

the  - electron gas layer in metallic graphine. The 

solution of eqn. (14) yield complex frequencies  = rt 

+ i i. It may be observed that the imaginary part i 

will be given by - /2. In fact, by writing =r + i/2, the 
solution for finite damping will be of the form: 
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 This friction coefficient is the inverse of the 

electron relaxation time. Using above equation the 
frequency of lattice vibration can be calculated. Hence 
the dispersion characteristics of the surface waves in 
the system are dependent on nano tube geometry, 
the wave number, the angular momentum, and the 
friction coefficient. However, it is easy to find that by 
increasing friction coefficient, the dispersion curves 
shift to lower frequencies. 

 The parameter o/meff takes into account the 
influence of the atomic crystal field. By using the 

semi-classical model of the -electron dynamics Migro 
and Villone obtain the following estimation:- 
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Where F is the velocity of the electron at the fermi 
level 
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o  is a characteristic energy ( o  = 2.7-3.0ev) of the 

lattice and it is the Plank's constant; it results that Fv  

= (0.9-1)x10
6
 m/sec. The equation (16) hold good for 

zig-zag nano tubes with m 3q<60, for arm chair nano 
tubes with m<50 and for chair vector nano tubes with 
2n+m=3q. In the range of validity of eqn. (16) th 
parameter decreases as the nano tube radius 
increases. 
      It is considered that long and short wavelength 

limits of eqn. (15) for Krc  , by using the well known 
asymptotic expressions - 
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with the finite m 
      The dispersion relation can be written 
approximately as : 
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 The right hand side of eqn. (17) depends 
strongly on the radius of the nano tube. 

       In the opposite limit krco, where the phase 
velocity of the surface Plasmon is comparable to the 
velocity of light, the surface Plasmon oscillations 
couple with the electromagnetic wave and radiation 
effects are present. The expression of Bessel 
functions, can be written as 
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That is a quasi acoustic mode and for m  0, then 
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 This is also quite sensitive to the geometric 
of the nano tube of graphine. Comparing the long-
wavelength and short wavelength limits, it can be 
seen that the energy band structure play an important 
role in the dispersion relation, for all values of 
wavelength. 

Table No.1 

k (Å
-1

) ω x10
7 

Hz 

0.1 1.007 

0.2 0.992 

0.3 0.983 

0.4 0.976 

0.5 0.972 

0.6 0.967 

0.7 0.964 

0.8 0.961 

 
Fig. 1 

It is clear from fig. 1 that for zero mode of lattice 
vibration, the frequency of lattice vibration decreases 
exponentially with increasing the propagation constant 
k, for armchair a0=2.459Å and b0=1.42Å with radius 
rc=3.9Å for position atom m=10 and n=0. It is also 
clear that for propagation constant range 0.4 to 0.6, 
the frequency of lattice vibration slightly increases and 
then slows down but the linearity of the graph shows 
that the propagation constant as increases the 
frequency of lattice vibration almost becomes 
constant. At higher value of propagation constant the 
lattice frequency becomes constant. 
Table no. 2 

k (Å
-1

) ω x10
7 

Hz 

0.1 0.9984 

0.2 0.9843 

0.3 0.9756 

0.4 0.9693 

0.5 0.9645 

0.6 0.9605 

0.7 0.9571 

0.8 0.9542 

 
Fig. 2 

  As seen from above fig. 2 that for zero mode 
of lattice vibration and for chiral vectors a0=2.459Å, 
b0=1.42Å, radius rc=5.40Å and for position atom 
m=8=n, the frequency of lattice vibration decreases 
exponentially with increasing the propagation constant 
k. It is also seen that for propagation constant range 
from 0.1 to 0.3, the frequency of lattice vibration 
decreases rapidly. At higher value of propagation 
constant the frequency of lattice vibration becomes 
constant. It is clearly seen that the graph of fig.1 is 
more linear than fig.2. 
Conclusion 

A  theoretical model based on the 
classical electrodynamics and hydrodynamic theory 
is employed to describe the plasmon wave 
propagation on the surface of the metallic 
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SWCNTS, where the effect of the energy band 
structure is taken into account. It has been found 
that the nanotube geometry play an important role 
in the dispersion relation of the surface waves, for 
all values of wavelength. The results obtained 
make us believe that  the hydrodynamical theory in 
conjection with semiclassical model is available 
and appropriates  for studies of the plasmon wave 
oscillations in CNTS , especially for different 
nanotube geometries. 
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